
define-datatype

In object-oriented programming everything that isn't
represented by the simple primitive types is represented by
an object of a class. Classes have a lot of built-in
functionality:

• constructors
• getters
• setters
• recognizers (e.g. Java's instance-of operator)

Because we have a hierarchy of classes, a class can contain
objects with different data. For example, a class Obies might
contain Students, who have gpas and transcripts and majors,
and Faculty, who have salaries, departments and tenure
schedules.

Classes have a lot of other functionality, like inheritance.
Scheme isn't object-oriented and we don't want it to be.
However, we do need more capable data than we get with
basic Scheme. In particular, for parsing we want to be able
to make various kinds of nodes that hold different sorts of
data, and as we walk around a parse tree we need to be
able to recognize what sort of node we have at any given
point.

It is possible to get this by using "tagged" lists that say what
sort of node is being represented. For example, we might have
a node that is a list of three elements. The first is a tag to say
this node represents a lambda expression. The second is a list
of symbols that are the parameters of the expression. The
third is an expression that represents the body of the
expression.

This can be made to work, but the resulting trees are difficult
to visualize and difficult to debug.

A number of people have added datatype mechanisms to
Scheme. We are going to use one that was developed in the
book Essentials of Programming Languages by Friedman,
Wand and Haynes. I will occasionally refer to this as EOPL.

You can access the full text of EOPL online through the library.
We will only be working with chapters 2 and 3 and I will try to
do everything in class that you need from this.

To use the EOPL system in Racket you need to put the
following line at the top of each Scheme file:

(require (lib "eopl.ss" "eopl"))

The feature we will use is called define-datatype

Here is an example that constructs binary trees.

(define-datatype binaryTree binaryTree?
 (null-node)
 (leaf-node (datum number?))
 (interior-node (key symbol?)
 (left-child binaryTree?)
 (right-child binaryTree?)))

This makes a datatype called "binaryTree" and a predicate
binaryTree? that takes any Scheme expression and says if it
was constructed using this define-datatype version of binary
trees.

There are three different kinds of binaryTrees:
• null-nodes, which contain no data
• leaf-nodes, which contain numbers
• interior-nodes, which contain symbols and two child

subtrees which must themselves be binaryTrees.

define-datatype creates a constructor procedure for each kind
of binaryTree. For example, (leaf-node 5) creates a leaf-node
object with datum 25.

Here is a short tree built from these functions:

(define T1 (leaf-node 23))
(define T2 (leaf-node 11))
(define T3 (interior-node 'bob T1 T2))
(define T4 (interior-node 'top T3 (null-node)))

top

bob

23 11

There is also a cases expression that gives you access to the
variant fields of an object constructed with define-datatype.
The format of this is
 (cases type object
 (variant1 (data fields) exp1)
 (variant2 (data fields) exp2)
 etc.)

For example, we could write a function that sums the leaf-
nodes of our binaryTrees with

(define sum (lambda (tree)
 (cases binaryTree tree
 (null-node () 0)
 (leaf-node (v) v)
 (interior-node (sym left right) (+ (sum left) (sum right))))))

Note that we get for free a predicate of the top-level
datatype but not for the variant types. The variant-type
predicaters are easy to build if you need them:

(define leaf-node? (lambda (x)
 (cond
 [(not (binaryTree? x)) #f]
 [else (cases binaryTree x
 (null-node () #f)
 (leaf-node (v) #t)
 (interior-node (a b c) #f))])))

Note that we can only construct objects of the variant types,
not of the top-level type. As we have defined it, we can
construct a null-node, a leaf-node and an interior-node, which
are the three kinds of binaryTrees, but we can't construct a
generic binaryTree. The top-level datatypes are like abstract
types in Java; they provide a unifying container for all of the
variants but you can't construct one of them.

